Broadcasting in Synchronous Networks with Dynamic Faults
نویسندگان
چکیده
The problem of broadcasting in a network is to disseminate information from one node to all other nodes by transmitting it over communication links that connect nodes. We consider the time of broadcasting in the presence of at most k dynamic link failures. If a node knows source information, then in the next step all its neighbors connected by operational links also get to know it. Faults are dynamic, in the sense that a link may alternate arbitrarily between being operational or faulty, provided that, at every time step, the number of faulty links does not exceed k. The time bounds on broadcasting are considered with respect to two parameters: the number k of faulty links and the diameter d of the underlying graph. Broadcasting is guaranteed to be successful if and only if the edge connectivity of the network exceeds k; and we consider only such networks. For a xed k, it is shown that broadcasting is always completed in time O(d k+1), where the bound is a function of diameter d. For a xed d, it is shown that broadcasting is always completed in time O(k d=2?1), where the bound is a function of k. We prove that these orders of magnitude cannot be improved in general. Among networks, particularly interesting are those in which broadcasting time is close to their diameter in the presence of at most k dynamic faults, where k + 1 is the edge-connectivity of the network. We show that multidimensional tori have this property.
منابع مشابه
Broadcasting in Complete Networks with Dynamic Edge Faults
We investigate the problem of broadcasting in a complete synchronous network with dynamic edge faults. The faults may be loss of messages only (omissions) or of arbitrary type (Byzantine faults). In both cases, broadcasting can be done in at most 5 rounds, i.e. in constant time, as long as the maximal number of faults per round allows broadcasting at all. Furthermore , we establish upper bounds...
متن کاملOn Fractional Dynamic Faults with Threshold
Unlike localized communication failures that occur on a fixed (although a priori unknown) set of links, dynamic faults can occur on any link. Known also as mobile or ubiquitous faults, their presence makes many tasks difficult if not impossible to solve even in synchronous systems. Their analysis and the development of fault-tolerant protocols have been carried out under two main models. In thi...
متن کاملRobust Fault Detection on Boiler-turbine Unit Actuators Using Dynamic Neural Networks
Due to the important role of the boiler-turbine units in industries and electricity generation, it is important to diagnose different types of faults in different parts of boiler-turbine system. Different parts of a boiler-turbine system like the sensor or actuator or plant can be affected by various types of faults. In this paper, the effects of the occurrence of faults on the actuators are in...
متن کاملDeterministic Models of Communication Faults
In this paper we survey some results concerning the impact of faulty environments on the solvability and complexity of communication tasks. In particular, we focus on deterministic models of faults in synchronous networks, and show how different variations of the model influence the performance bounds of broadcasting algorithms.
متن کاملAgreement in synchronous networks with ubiquitous faults
In this paper we are interested in synchronous distributed systems subject to transient and ubiquitous failures. This includes systems where failures will occur on any communication link, systems where every processor will experience at one time or another send or receive failure, etc., and, following a failure, normal functioning resuming after a finite time. Notice that these cases cannot be ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1994